We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2 we show that the spectral decomposition of thisintegral operator gives a complete description of the reproducing kernel, extending Mercer theorem.

Vector Valued Reproducing Kernel Hilbert Spaces Integrable, Functions and Mercer Theorem / C., Carmeli; DE VITO, Ernesto; A., Toigo. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - STAMPA. - 4:4(2006), pp. 377-408. [10.1142/S0219530506000838]

Vector Valued Reproducing Kernel Hilbert Spaces Integrable, Functions and Mercer Theorem

DE VITO, Ernesto;
2006

Abstract

We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2 we show that the spectral decomposition of thisintegral operator gives a complete description of the reproducing kernel, extending Mercer theorem.
2006
4
4
377
408
Vector Valued Reproducing Kernel Hilbert Spaces Integrable, Functions and Mercer Theorem / C., Carmeli; DE VITO, Ernesto; A., Toigo. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - STAMPA. - 4:4(2006), pp. 377-408. [10.1142/S0219530506000838]
C., Carmeli; DE VITO, Ernesto; A., Toigo
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/597950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 120
social impact