We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2 we show that the spectral decomposition of thisintegral operator gives a complete description of the reproducing kernel, extending Mercer theorem.
Vector Valued Reproducing Kernel Hilbert Spaces Integrable, Functions and Mercer Theorem / C., Carmeli; DE VITO, Ernesto; A., Toigo. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - STAMPA. - 4:4(2006), pp. 377-408. [10.1142/S0219530506000838]
Vector Valued Reproducing Kernel Hilbert Spaces Integrable, Functions and Mercer Theorem
DE VITO, Ernesto;
2006
Abstract
We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2 we show that the spectral decomposition of thisintegral operator gives a complete description of the reproducing kernel, extending Mercer theorem.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris