We study the discretization of inverse problems defined by a Carleman operator. In particular we develop a discretization strategy for this class of inverse problems and we give a convergence analysis. Learning from examples as well as the discretization of integral equations can be analysed in our setting.

Discretization Error Analysis for Tikhonov Regularization in Learning Theory / DE VITO, Ernesto; A., Caponnetto; L., Rosasco. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - STAMPA. - 4:(2006), pp. 81-99.

Discretization Error Analysis for Tikhonov Regularization in Learning Theory

DE VITO, Ernesto;
2006

Abstract

We study the discretization of inverse problems defined by a Carleman operator. In particular we develop a discretization strategy for this class of inverse problems and we give a convergence analysis. Learning from examples as well as the discretization of integral equations can be analysed in our setting.
2006
4
81
99
Discretization Error Analysis for Tikhonov Regularization in Learning Theory / DE VITO, Ernesto; A., Caponnetto; L., Rosasco. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - STAMPA. - 4:(2006), pp. 81-99.
DE VITO, Ernesto; A., Caponnetto; L., Rosasco
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/597949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact