Gamma-retroviruses and lentiviruses integrate non-randomly in mammalian genomes, with specific preferences for active chromatin, promoters and regulatory regions. Gene transfer vectors derived from gamma-retroviruses target at high frequency genes involved in the control of growth, development and differentiation of the target cell, and may induce insertional tumors or pre-neoplastic clonal expansions in patients treated by gene therapy. The gene expression program of the target cell is apparently instrumental in directing gamma-retroviral integration, although the molecular basis of this phenomenon is poorly understood. We report a bioinformatic analysis of the distribution of transcription factor binding sites (TFBSs) flanking >4,000 integrated proviruses in human hematopoietic and non-hematopoietic cells. We show that gamma-retroviral, but not lentiviral vectors, integrate in genomic regions enriched in cell-type specific subsets of TFBSs, independently from their relative position with respect to genes and transcription start sites. Analysis of sequences flanking the integration sites of Moloney leukemia virus (MLV)- and human immunodeficiency virus (HIV)-derived vectors carrying mutations in their long terminal repeats (LTRs), and of HIV vectors packaged with an MLV integrase, indicates that the MLV integrase and LTR enhancer are the viral determinants of the selection of TFBS-rich regions in the genome. This study identifies TFBSs as differential genomic determinants of retroviral target site selection in the human genome, and suggests that transcription factors binding the LTR enhancer may synergize with the integrase in tethering retroviral pre-integration complexes to transcriptionally active regulatory regions. Our data indicate that gamma-retroviruses and lentiviruses have evolved dramatically different strategies to interact with the host cell chromatin, and predict a higher risk in using gamma-retroviral vs. lentiviral vectors for human gene therapy applications.

Transcription factor binding sites are genetic determinants of retroviral integration in the human genome / Felice, B; Cattoglio, C; Cittaro, D; Testa, Anna; Miccio, Annarita; Ferrari, G; Luzi, L; Recchia, Alessandra; Mavilio, Fulvio. - In: PLOS ONE. - ISSN 1932-6203. - STAMPA. - 4:2(2009), pp. e4571-e4571. [10.1371/journal.pone.0004571]

Transcription factor binding sites are genetic determinants of retroviral integration in the human genome.

TESTA, Anna;MICCIO, ANNARITA;RECCHIA, Alessandra;MAVILIO, Fulvio
2009

Abstract

Gamma-retroviruses and lentiviruses integrate non-randomly in mammalian genomes, with specific preferences for active chromatin, promoters and regulatory regions. Gene transfer vectors derived from gamma-retroviruses target at high frequency genes involved in the control of growth, development and differentiation of the target cell, and may induce insertional tumors or pre-neoplastic clonal expansions in patients treated by gene therapy. The gene expression program of the target cell is apparently instrumental in directing gamma-retroviral integration, although the molecular basis of this phenomenon is poorly understood. We report a bioinformatic analysis of the distribution of transcription factor binding sites (TFBSs) flanking >4,000 integrated proviruses in human hematopoietic and non-hematopoietic cells. We show that gamma-retroviral, but not lentiviral vectors, integrate in genomic regions enriched in cell-type specific subsets of TFBSs, independently from their relative position with respect to genes and transcription start sites. Analysis of sequences flanking the integration sites of Moloney leukemia virus (MLV)- and human immunodeficiency virus (HIV)-derived vectors carrying mutations in their long terminal repeats (LTRs), and of HIV vectors packaged with an MLV integrase, indicates that the MLV integrase and LTR enhancer are the viral determinants of the selection of TFBS-rich regions in the genome. This study identifies TFBSs as differential genomic determinants of retroviral target site selection in the human genome, and suggests that transcription factors binding the LTR enhancer may synergize with the integrase in tethering retroviral pre-integration complexes to transcriptionally active regulatory regions. Our data indicate that gamma-retroviruses and lentiviruses have evolved dramatically different strategies to interact with the host cell chromatin, and predict a higher risk in using gamma-retroviral vs. lentiviral vectors for human gene therapy applications.
2009
4
2
e4571
e4571
Transcription factor binding sites are genetic determinants of retroviral integration in the human genome / Felice, B; Cattoglio, C; Cittaro, D; Testa, Anna; Miccio, Annarita; Ferrari, G; Luzi, L; Recchia, Alessandra; Mavilio, Fulvio. - In: PLOS ONE. - ISSN 1932-6203. - STAMPA. - 4:2(2009), pp. e4571-e4571. [10.1371/journal.pone.0004571]
Felice, B; Cattoglio, C; Cittaro, D; Testa, Anna; Miccio, Annarita; Ferrari, G; Luzi, L; Recchia, Alessandra; Mavilio, Fulvio
File in questo prodotto:
File Dimensione Formato  
Felice B et al.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3 MB
Formato Adobe PDF
3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/597361
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 78
social impact