In this paper a review of the research performed in recent years by the group of the authors is presented. The definition and basic properties of the Wigner function are first given. Several forms of its dynamical equation are then derived with the inclusion of potential and phonon scattering. For the case of a potential V(r) the effect of the classical force, for any form of V(r), is separated from quantum effects due to rapidly varying potentials. An elaboration of the dynamical equation is introduced that leads to Wigner paths formed by free flights and scattering events. These are especially suitable for a Monte Carlo solution of the transport equation for the Wigner function very similar to the semiclassical traditional Monte Carlo simulation. The Monte Carlo simulation can be extended also to the momentum and frequency dependent Wigner function based on a two-time Green function. Several numerical results are presented throuhout the paper.
Quantum transport and its simulation with the Wigner-function approach / Jacoboni, Carlo; Brunetti, Rossella; Bordone, Paolo; A., Bertoni. - STAMPA. - 22:(2001), pp. 25-61.
Quantum transport and its simulation with the Wigner-function approach
JACOBONI, Carlo;BRUNETTI, Rossella;BORDONE, Paolo;
2001
Abstract
In this paper a review of the research performed in recent years by the group of the authors is presented. The definition and basic properties of the Wigner function are first given. Several forms of its dynamical equation are then derived with the inclusion of potential and phonon scattering. For the case of a potential V(r) the effect of the classical force, for any form of V(r), is separated from quantum effects due to rapidly varying potentials. An elaboration of the dynamical equation is introduced that leads to Wigner paths formed by free flights and scattering events. These are especially suitable for a Monte Carlo solution of the transport equation for the Wigner function very similar to the semiclassical traditional Monte Carlo simulation. The Monte Carlo simulation can be extended also to the momentum and frequency dependent Wigner function based on a two-time Green function. Several numerical results are presented throuhout the paper.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris