In this work the Wigner function approach to quantum transport developed for the single electron case is extended to a more complicated system for n indistingushable particles. In particular we study how the Monte Carlo tecnique and the Wigner paths method can be applyed to a single particle Wigner function defined for a system of n interacting particles. The numerical results are obtained for the case of a system of two particles under different conditions: two noninteracting fermions, two noninteracting bosons, two non interacting distinguishable particles and two interacting fermions.

Wigner functions for identical particles / E., Cancellieri; Bordone, Paolo; A., Bertoni; G., Ferrari; Jacoboni, Carlo. - In: JOURNAL OF COMPUTATIONAL ELECTRONICS. - ISSN 1569-8025. - STAMPA. - 3:(2004), pp. 411-415. [10.1007/s10825-004-7087-0]

Wigner functions for identical particles

BORDONE, Paolo;JACOBONI, Carlo
2004

Abstract

In this work the Wigner function approach to quantum transport developed for the single electron case is extended to a more complicated system for n indistingushable particles. In particular we study how the Monte Carlo tecnique and the Wigner paths method can be applyed to a single particle Wigner function defined for a system of n interacting particles. The numerical results are obtained for the case of a system of two particles under different conditions: two noninteracting fermions, two noninteracting bosons, two non interacting distinguishable particles and two interacting fermions.
2004
3
411
415
Wigner functions for identical particles / E., Cancellieri; Bordone, Paolo; A., Bertoni; G., Ferrari; Jacoboni, Carlo. - In: JOURNAL OF COMPUTATIONAL ELECTRONICS. - ISSN 1569-8025. - STAMPA. - 3:(2004), pp. 411-415. [10.1007/s10825-004-7087-0]
E., Cancellieri; Bordone, Paolo; A., Bertoni; G., Ferrari; Jacoboni, Carlo
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/595813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact