By means of a minimax argument, we prove the existence of at least one heteroclinic solution to a scalar equation of the kind x''=a(t)V'(x), where V is a double well potential, 0<l<=a(t)<=L, a(t) converges to l as |t| diverges and the ratio L/l is suitably bounded from above.
On the existence of heteroclinic trajectories for asymptotically autonomous equations / Gavioli, Andrea. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - STAMPA. - 34:2(2009), pp. 251-266. [10.12775/TMNA.2009.041]
On the existence of heteroclinic trajectories for asymptotically autonomous equations
GAVIOLI, Andrea
2009
Abstract
By means of a minimax argument, we prove the existence of at least one heteroclinic solution to a scalar equation of the kind x''=a(t)V'(x), where V is a double well potential, 0Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris