The bacterial degradation of organic compounds plays a crucial role in the biogeochemical cycles ofthe earth and in the clean!up of contaminated soils[ The processes are carried out by bacterial consortia\rather than isolated strains\ which are usually modelled by phenomenological kinetic equations whichdescribe a _ctitious\ homogeneous bacterial species which mimics the behaviour of the consortium[An alternative modelling framework is presented here\ where the bacterial consortia are consideredas networks of genes interacting with other genes as well as with chemicals\ which may be eitherintroduced from outside or produced by bacterial metabolism[ The model is based on an extension ofthe random Boolean network model of genetic networks\ which makes use of continuous dynamicalvariables[ Three di}erent models are introduced\ which di}er in the way how they account for theexistence of di}erent species] "i# a single supercell model\ where all the genes can interact strongly witheach other^ "ii# a graded interaction model\ where genes interact strongly within a species\ and weaklyamong di}erent species^ and "iii# a separate subsets model\ where genes interact only within species[It is shown how this modelling framework is sound\ as it is able to reproduce some of the genericbehaviours of bacterial consortia\ describing experimentally observed phenomena like populationchanges induced by contamination\ and preypredator dynamics[
MODELLING BACTERIAL DEGRADATION OF ORGANIC COMPOUNDS WITH GENETIC NETWORKS / Serra, Roberto; Villani, Marco. - In: JOURNAL OF THEORETICAL BIOLOGY. - ISSN 0022-5193. - STAMPA. - 189:(1997), pp. 107-119.
MODELLING BACTERIAL DEGRADATION OF ORGANIC COMPOUNDS WITH GENETIC NETWORKS
SERRA, Roberto;VILLANI, Marco
1997
Abstract
The bacterial degradation of organic compounds plays a crucial role in the biogeochemical cycles ofthe earth and in the clean!up of contaminated soils[ The processes are carried out by bacterial consortia\rather than isolated strains\ which are usually modelled by phenomenological kinetic equations whichdescribe a _ctitious\ homogeneous bacterial species which mimics the behaviour of the consortium[An alternative modelling framework is presented here\ where the bacterial consortia are consideredas networks of genes interacting with other genes as well as with chemicals\ which may be eitherintroduced from outside or produced by bacterial metabolism[ The model is based on an extension ofthe random Boolean network model of genetic networks\ which makes use of continuous dynamicalvariables[ Three di}erent models are introduced\ which di}er in the way how they account for theexistence of di}erent species] "i# a single supercell model\ where all the genes can interact strongly witheach other^ "ii# a graded interaction model\ where genes interact strongly within a species\ and weaklyamong di}erent species^ and "iii# a separate subsets model\ where genes interact only within species[It is shown how this modelling framework is sound\ as it is able to reproduce some of the genericbehaviours of bacterial consortia\ describing experimentally observed phenomena like populationchanges induced by contamination\ and preypredator dynamics[Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris