This work concerns with the solution of optimal control problems by means of nonlinear programming methods. The control problem is transcribed into a finite dimensional nonlinear programming problem by finite difference approximation. An iterative procedure for the solution of this nonlinear program is presented. An extensive numerical analysis of the behaviour of the method is reported on boundary control and distributed control problems with boundary conditions of Dirichlet or Neumann or mixed type.

Galligani, Emanuele. "A note on the iterative solution of weakly nonlinear elliptic control problems with control and state constraints" Working paper, Dipartimento di Matematica Giuseppe Vitali - Università di Modena e Reggio Emilia, 2007. https://doi.org/10.25431/11380_593963

A note on the iterative solution of weakly nonlinear elliptic control problems with control and state constraints

GALLIGANI, Emanuele
2007

Abstract

This work concerns with the solution of optimal control problems by means of nonlinear programming methods. The control problem is transcribed into a finite dimensional nonlinear programming problem by finite difference approximation. An iterative procedure for the solution of this nonlinear program is presented. An extensive numerical analysis of the behaviour of the method is reported on boundary control and distributed control problems with boundary conditions of Dirichlet or Neumann or mixed type.
Ottobre
Quaderni del Dipartimento, n. 79
Galligani, Emanuele
Galligani, Emanuele. "A note on the iterative solution of weakly nonlinear elliptic control problems with control and state constraints" Working paper, Dipartimento di Matematica Giuseppe Vitali - Università di Modena e Reggio Emilia, 2007. https://doi.org/10.25431/11380_593963
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/593963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact