Given n pairwise distinct and arbitrarily spaced points P_i in a domain D of the x-y plane and n real numbers f_i, consider the problem of computing a bivariate function f(x,y) of class C1 in D whose values in P_i are exactly f_i, i=1,...,n, and whose first or second order partial derivatives satisfy appropriate equality and inequality constraints on a given set of p points Q_l in D.In this paper we present a method for solving the above problem, which is designed for extremely large data sets. A step of this method requires the solution of a large scale quadratic programming (QP) problem. The main purpose of this work is to analyse an iterative method for determining the solution of this QP problem: such a method is very efficient and well suited for parallel implementation on a multiprocessor system.
C1 surface interpolation with constraints / Galligani, Emanuele. - In: NUMERICAL ALGORITHMS. - ISSN 1017-1398. - STAMPA. - 5(1993), pp. 549-555.
Data di pubblicazione: | 1993 | |
Titolo: | C1 surface interpolation with constraints | |
Autore/i: | Galligani, Emanuele | |
Autore/i UNIMORE: | ||
Rivista: | ||
Volume: | 5 | |
Pagina iniziale: | 549 | |
Pagina finale: | 555 | |
Codice identificativo Scopus: | 2-s2.0-0347937962 | |
Citazione: | C1 surface interpolation with constraints / Galligani, Emanuele. - In: NUMERICAL ALGORITHMS. - ISSN 1017-1398. - STAMPA. - 5(1993), pp. 549-555. | |
Tipologia | Articolo su rivista |
File in questo prodotto:
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris