We consider a class of ultraparabolic differential equations that satisfy the Hörmander’s hypoellipticity condition and we prove that the weak solutions to the equation with measurable coefficients are locally bounded functions. The method extends the Moser’s iteration procedure and has previously been employed in the case of operators verifying a further homogeneity assumption. Here we remove that assumption by proving some potential estimates and some ad hoc Sobolev typeinequalities for solutions.

Pointwise estimates for a class of non-homogeneous Kolmogorov equations / C., Cinti; A., Pascucci; Polidoro, Sergio. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 340(2008), pp. 237-264.

Pointwise estimates for a class of non-homogeneous Kolmogorov equations

POLIDORO, Sergio
2008

Abstract

We consider a class of ultraparabolic differential equations that satisfy the Hörmander’s hypoellipticity condition and we prove that the weak solutions to the equation with measurable coefficients are locally bounded functions. The method extends the Moser’s iteration procedure and has previously been employed in the case of operators verifying a further homogeneity assumption. Here we remove that assumption by proving some potential estimates and some ad hoc Sobolev typeinequalities for solutions.
340
237
264
Pointwise estimates for a class of non-homogeneous Kolmogorov equations / C., Cinti; A., Pascucci; Polidoro, Sergio. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 340(2008), pp. 237-264.
C., Cinti; A., Pascucci; Polidoro, Sergio
File in questo prodotto:
File Dimensione Formato  
Polidoro.pdf

non disponibili

Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 296.52 kB
Formato Adobe PDF
296.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/592696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact