The 20-kDa di-heme cytochrome c4 from thepsycrophilic bacterium Pseudoalteromonas haloplanktisTAC 125 was cloned and expressed in Escherichia coli andinvestigated through UV–vis and 1H NMR spectroscopiesand protein voltammetry. The model structure was computedusing the X-ray structure of Pseudomonas stutzericytochrome c4 as a template. The protein shows unprecedentedproperties within the cytochrome c4 family,including (1) an almost nonpolar surface charge distribution,(2) the absence of high-spin heme Fe(III) states,indicative of a thermodynamically stable and kineticallyinert axial heme His,Met coordination, and (3) identical E0values for the two heme centers (+0.322 V vs the standardhydrogen elecrode). At pH extremes, both heme groupsundergo the ‘‘acid’’ and ‘‘alkaline’’ conformational transitionstypical of class I cytochromes c, involving ligandexchangeequilibria, whereas at intermediate pH valuestheir electronic properties are sensitive to several residueionizations.
Cloning, expression and physico-chemical characterization of a di-heme cytochrome c4 from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 / DI ROCCO, Giulia; Battistuzzi, Gianantonio; Borsari, Marco; DE RIENZO, Francesca; Ranieri, Antonio; M. L., Tutino; Sola, Marco. - In: JBIC. - ISSN 0949-8257. - STAMPA. - 13:(2008), pp. 789-799. [10.1007/s00775-008-0366-7]
Cloning, expression and physico-chemical characterization of a di-heme cytochrome c4 from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125
DI ROCCO, Giulia;BATTISTUZZI, Gianantonio;BORSARI, Marco;DE RIENZO, Francesca;RANIERI, Antonio;SOLA, Marco
2008
Abstract
The 20-kDa di-heme cytochrome c4 from thepsycrophilic bacterium Pseudoalteromonas haloplanktisTAC 125 was cloned and expressed in Escherichia coli andinvestigated through UV–vis and 1H NMR spectroscopiesand protein voltammetry. The model structure was computedusing the X-ray structure of Pseudomonas stutzericytochrome c4 as a template. The protein shows unprecedentedproperties within the cytochrome c4 family,including (1) an almost nonpolar surface charge distribution,(2) the absence of high-spin heme Fe(III) states,indicative of a thermodynamically stable and kineticallyinert axial heme His,Met coordination, and (3) identical E0values for the two heme centers (+0.322 V vs the standardhydrogen elecrode). At pH extremes, both heme groupsundergo the ‘‘acid’’ and ‘‘alkaline’’ conformational transitionstypical of class I cytochromes c, involving ligandexchangeequilibria, whereas at intermediate pH valuestheir electronic properties are sensitive to several residueionizations.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris