Doxorubicin (DOX) has not only chronic, but also acute toxic effects in the heart, ascribed to the generation of reactive oxygen species (ROS). Focusing on the DOX-induced early biochemical changes in rat cardiomyocytes, we demonstrated that lipid peroxidation is an early event, in fact conjugated diene production increased after 1-h DOX exposure, while cell damage, evaluated as lactate dehydrogenase (LDH) release, was observed only later, when at least one third of the cell antioxidant defences were consumed. Cell pre-treatment with alpha-tocopherol (TC) inhibited both conjugated diene production and LDH release. In cardiomyocytes, DOX treatment caused a maximal increase in glucose uptake at 1 h, demonstrating that glucose transport may represent an early target for DOX. At longer times, as the cell damage become significant, the glucose uptake stimulation diminished. Immunoblotting of glucose transporter isoform GLUT I in membranes after 1-h DOX exposure revealed an increase in GLUT1 amount similar to the increase in transport activity; both effects were inhibited by alphaTC. Early lipid peroxidation evokes an adaptive response resulting in an increased glucose uptake, presumably to restore cellular energy. The regulation of nutrient transport mechanisms in cardiomyocytes may be considered an early event in the development of the cardiotoxic effects of the anthracycline.
Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes / S., Hrelia; D., Fiorentini; Maraldi, Tullia; C., Angeloni; A., Bordoni; Pl, Biagi; G., Hakim. - In: BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES. - ISSN 0005-2736. - STAMPA. - 1567:(2002), pp. 150-156. [10.1016/S0005-2736(02)00612-0]
Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes
MARALDI, Tullia;
2002
Abstract
Doxorubicin (DOX) has not only chronic, but also acute toxic effects in the heart, ascribed to the generation of reactive oxygen species (ROS). Focusing on the DOX-induced early biochemical changes in rat cardiomyocytes, we demonstrated that lipid peroxidation is an early event, in fact conjugated diene production increased after 1-h DOX exposure, while cell damage, evaluated as lactate dehydrogenase (LDH) release, was observed only later, when at least one third of the cell antioxidant defences were consumed. Cell pre-treatment with alpha-tocopherol (TC) inhibited both conjugated diene production and LDH release. In cardiomyocytes, DOX treatment caused a maximal increase in glucose uptake at 1 h, demonstrating that glucose transport may represent an early target for DOX. At longer times, as the cell damage become significant, the glucose uptake stimulation diminished. Immunoblotting of glucose transporter isoform GLUT I in membranes after 1-h DOX exposure revealed an increase in GLUT1 amount similar to the increase in transport activity; both effects were inhibited by alphaTC. Early lipid peroxidation evokes an adaptive response resulting in an increased glucose uptake, presumably to restore cellular energy. The regulation of nutrient transport mechanisms in cardiomyocytes may be considered an early event in the development of the cardiotoxic effects of the anthracycline.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0005273602006120-main.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
163.61 kB
Formato
Adobe PDF
|
163.61 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris