In this paper we face the problem of clustering mixedmode data by assuming that the observed binary variables aregenerated from latent continuous variables. We perform a principalcomponents analysis on the matrix of tetrachoric correlations andwe estimate the scores of each latent variable and reach a datamatrix with continuous variables to be used in fully Guassianmodels or in the k-means cluster analysis. Results on a simulationstudy and on a real data set are reported

Mixed mode data clustering: an approach based on tetrachoric correlations / Morlini, Isabella. - STAMPA. - 1:(2008), pp. 73-76. (Intervento presentato al convegno First Joint Meeting of the Sfc and the CLADAG of the Italian Statistical Society tenutosi a Caserta, Italy nel 11-13 Giugno 2008).

Mixed mode data clustering: an approach based on tetrachoric correlations

MORLINI, Isabella
2008

Abstract

In this paper we face the problem of clustering mixedmode data by assuming that the observed binary variables aregenerated from latent continuous variables. We perform a principalcomponents analysis on the matrix of tetrachoric correlations andwe estimate the scores of each latent variable and reach a datamatrix with continuous variables to be used in fully Guassianmodels or in the k-means cluster analysis. Results on a simulationstudy and on a real data set are reported
2008
First Joint Meeting of the Sfc and the CLADAG of the Italian Statistical Society
Caserta, Italy
11-13 Giugno 2008
1
73
76
Morlini, Isabella
Mixed mode data clustering: an approach based on tetrachoric correlations / Morlini, Isabella. - STAMPA. - 1:(2008), pp. 73-76. (Intervento presentato al convegno First Joint Meeting of the Sfc and the CLADAG of the Italian Statistical Society tenutosi a Caserta, Italy nel 11-13 Giugno 2008).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/590588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact