In this paper, we describe some evolutionaryapproaches based on genetic algorithms to face the statisticalmodel selection problem using completely data-drivenalgorithms. As first, we propose an approach to selectmultivariate linear regression models as well as to buildARMA time series models. As second, we introduce amethodology to tackle the clustering problem in a modelbasedframework. We report the results from severalapplications and from simulated datasets and we compare theevolutionary approaches with some classical ones.
Evolutionary Approaches for Statistical Modelling / Minerva, Tommaso; Paterlini, Sandra. - STAMPA. - 2:(2002), pp. 2023-2028. (Intervento presentato al convegno WCCI 2002,Proc. of the Fourth Congress on Evolutionary Computation tenutosi a Honolulu, Haway nel May 2002) [10.1109/CEC.2002.1004554].
Evolutionary Approaches for Statistical Modelling
MINERVA, Tommaso;PATERLINI, Sandra
2002
Abstract
In this paper, we describe some evolutionaryapproaches based on genetic algorithms to face the statisticalmodel selection problem using completely data-drivenalgorithms. As first, we propose an approach to selectmultivariate linear regression models as well as to buildARMA time series models. As second, we introduce amethodology to tackle the clustering problem in a modelbasedframework. We report the results from severalapplications and from simulated datasets and we compare theevolutionary approaches with some classical ones.File | Dimensione | Formato | |
---|---|---|---|
CEC.2002.1004554.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
635.39 kB
Formato
Adobe PDF
|
635.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris