This paper proposes the exploitation of a dynamic programming technique for efficiently comparing people trajectories adopting an encoding scheme that jointly takes into account both the direction and the velocity of movement. With this approach, each pair of trajectories in the training set is compared and the corresponding distance computed. Clustering is achieved by using the k-medoids algorithm and each cluster is modeled with a 1-D Gaussian over the distance from the medoid. A MAP framework is adopted for the testing phase. The reported results are encouraging.

A Dynamic Programming Technique for Classifying Trajectories / Calderara, Simone; Cucchiara, Rita; Prati, A.. - STAMPA. - (2007), pp. 137-142. ((Intervento presentato al convegno 14th International Conference on Image Analysis and Processing tenutosi a Modena Italy nel 10-14 September 2007 [10.1109/ICIAP.2007.4362770].

A Dynamic Programming Technique for Classifying Trajectories

CALDERARA, Simone;CUCCHIARA, Rita;
2007

Abstract

This paper proposes the exploitation of a dynamic programming technique for efficiently comparing people trajectories adopting an encoding scheme that jointly takes into account both the direction and the velocity of movement. With this approach, each pair of trajectories in the training set is compared and the corresponding distance computed. Clustering is achieved by using the k-medoids algorithm and each cluster is modeled with a 1-D Gaussian over the distance from the medoid. A MAP framework is adopted for the testing phase. The reported results are encouraging.
14th International Conference on Image Analysis and Processing
Modena Italy
10-14 September 2007
137
142
Calderara, Simone; Cucchiara, Rita; Prati, A.
A Dynamic Programming Technique for Classifying Trajectories / Calderara, Simone; Cucchiara, Rita; Prati, A.. - STAMPA. - (2007), pp. 137-142. ((Intervento presentato al convegno 14th International Conference on Image Analysis and Processing tenutosi a Modena Italy nel 10-14 September 2007 [10.1109/ICIAP.2007.4362770].
File in questo prodotto:
File Dimensione Formato  
ICIAP.pdf

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/587763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact