We consider the time-dependent non linear Schrodinger equationswith a double well potential. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest two eigenvalues of the linear operator is almost invariant for any time.

Stability of spectral eigenspaces in nonlinear Schrodinger equations / Bambusi, D; Sacchetti, Andrea. - In: DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1548-159X. - STAMPA. - 4:2(2007), pp. 129-141. [10.4310/DPDE.2007.v4.n2.a2]

Stability of spectral eigenspaces in nonlinear Schrodinger equations

SACCHETTI, Andrea
2007

Abstract

We consider the time-dependent non linear Schrodinger equationswith a double well potential. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest two eigenvalues of the linear operator is almost invariant for any time.
2007
4
2
129
141
Stability of spectral eigenspaces in nonlinear Schrodinger equations / Bambusi, D; Sacchetti, Andrea. - In: DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1548-159X. - STAMPA. - 4:2(2007), pp. 129-141. [10.4310/DPDE.2007.v4.n2.a2]
Bambusi, D; Sacchetti, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/585697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact