We consider the Gross-Pitaevskii equation in 1 space dimension with a N-well trapping potential. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest N eigenvalues of the linear operator is slightlydeformed by the nonlinear term into an almost invariant manifold M. Precisely, one has that solutions starting on M, or close to it, will remain close to M for times exponentially long with the inverse of the size of the nonlinearity. As heuristically expected theeffective equation onMis a perturbation of a discrete nonlinear Schrödinger equation. We deduce that when the size of the nonlinearity is large enough then tunneling amongthe wells essentially disappears: that is for almost all solutions starting close to M their restriction to each of the wells has norm approximatively constant over the considered time scale. In the particular case of a double well potential we give a more preciseresult showing persistence or destruction of the beating motions over exponentially long times. The proof is based on canonical perturbation theory; surprisingly enough, due to the Gauge invariance of the system, no non-resonance condition is required.
Exponential times in the one-dimensional gross-pitaevskii equation with multiple well potential / Bambusi, D; Sacchetti, Andrea. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 275:(2007), pp. 1-36. [10.1007/s00220-007-0293-4]
Exponential times in the one-dimensional gross-pitaevskii equation with multiple well potential
SACCHETTI, Andrea
2007
Abstract
We consider the Gross-Pitaevskii equation in 1 space dimension with a N-well trapping potential. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest N eigenvalues of the linear operator is slightlydeformed by the nonlinear term into an almost invariant manifold M. Precisely, one has that solutions starting on M, or close to it, will remain close to M for times exponentially long with the inverse of the size of the nonlinearity. As heuristically expected theeffective equation onMis a perturbation of a discrete nonlinear Schrödinger equation. We deduce that when the size of the nonlinearity is large enough then tunneling amongthe wells essentially disappears: that is for almost all solutions starting close to M their restriction to each of the wells has norm approximatively constant over the considered time scale. In the particular case of a double well potential we give a more preciseresult showing persistence or destruction of the beating motions over exponentially long times. The proof is based on canonical perturbation theory; surprisingly enough, due to the Gauge invariance of the system, no non-resonance condition is required.File | Dimensione | Formato | |
---|---|---|---|
CMP_Bambusi_Sacchetti_2007_VQR.pdf
Accesso riservato
Tipologia:
Altro
Dimensione
243.74 kB
Formato
Adobe PDF
|
243.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris