The paper refers to the modeling of the plasma plume influence on the shape of the crater obtained by means of nanosecond pulsed laser milling. A transient model of the physical state of the plasma plume is developed according to the laser parameters. Two empirical coefficients are proposed in the model in order to evaluate the plasma plume self-emission energy lost towards the environment and the energy spread from the plasma towards the target surface. These two coefficients, directly correlated to the depth and to the width of the crater, can be experimentally determined, due to the difficulty of their analytical quantification, and they can be used for tuning a complete plasma plume software package for laser milling simulation named LAS (Laser Ablation Simulator) already developed by the authors. In this paper their influence on the crater shape will be proved by means of several simulation runs.
The influence of plasma plume in laser milling for mold manufacturing / G., Tani; Orazi, Leonardo; A., Fortunato; Cuccolini, Gabriele. - In: JOURNAL OF LASER MICRO NANOENGINEERING. - ISSN 1880-0688. - STAMPA. - 2:3(2007), pp. 225-229. [10.2961/jlmn.2007.03.0012]
The influence of plasma plume in laser milling for mold manufacturing
ORAZI, Leonardo;CUCCOLINI, Gabriele
2007
Abstract
The paper refers to the modeling of the plasma plume influence on the shape of the crater obtained by means of nanosecond pulsed laser milling. A transient model of the physical state of the plasma plume is developed according to the laser parameters. Two empirical coefficients are proposed in the model in order to evaluate the plasma plume self-emission energy lost towards the environment and the energy spread from the plasma towards the target surface. These two coefficients, directly correlated to the depth and to the width of the crater, can be experimentally determined, due to the difficulty of their analytical quantification, and they can be used for tuning a complete plasma plume software package for laser milling simulation named LAS (Laser Ablation Simulator) already developed by the authors. In this paper their influence on the crater shape will be proved by means of several simulation runs.File | Dimensione | Formato | |
---|---|---|---|
2007_JLMN_LAS.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris