A particular kind of 2-cell imbedding for a class of edge-coloured graphs into surfaces with boundary is introduced and studied. This allows to define, as in [Geom. Dedicata 11 (1981), 397-414], where the closed case was treated, a pair of invariants -the "regular genus" and the "hole-number" - for every n-manifold with boundary. These invariants are proved to coincide with the classical ones in dimension two, and to be strictly related with a Heegaard-like handlebody decomposition in dimension three. A characterization of the n-disk D^n, as the unique n-manifold with regular genus zero and hole-number one, concludes the work.
Regular genus - The boundary case / Gagliardi, Carlo. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - STAMPA. - 22(1987), pp. 261-281.
Data di pubblicazione: | 1987 |
Titolo: | Regular genus - The boundary case |
Autore/i: | Gagliardi, Carlo |
Autore/i UNIMORE: | |
Rivista: | |
Volume: | 22 |
Pagina iniziale: | 261 |
Pagina finale: | 281 |
Codice identificativo ISI: | WOS:A1987H235300002 |
Codice identificativo Scopus: | 2-s2.0-0040393784 |
Citazione: | Regular genus - The boundary case / Gagliardi, Carlo. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - STAMPA. - 22(1987), pp. 261-281. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris