Some graph-theoretical tools are used to introduce the concept of regular genus, for every closed, n-dimensional PL manifold M^n. Then it is proved that the regular genus of every surface equals its genus, and that the regular genus of every 3-manifold M^3 equals its Heegaard genus if M^3 is orientable, and twice its Heegaard genus if M^3 is non orientable. A geometric opproach and some applications in dimension 4 are also presented.

Extending the concept of genus to dimension n / Gagliardi, Carlo. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 81:(1981), pp. 473-481.

Extending the concept of genus to dimension n

GAGLIARDI, Carlo
1981

Abstract

Some graph-theoretical tools are used to introduce the concept of regular genus, for every closed, n-dimensional PL manifold M^n. Then it is proved that the regular genus of every surface equals its genus, and that the regular genus of every 3-manifold M^3 equals its Heegaard genus if M^3 is orientable, and twice its Heegaard genus if M^3 is non orientable. A geometric opproach and some applications in dimension 4 are also presented.
1981
81
473
481
Extending the concept of genus to dimension n / Gagliardi, Carlo. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 81:(1981), pp. 473-481.
Gagliardi, Carlo
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/584463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 68
social impact