In this Letter we show that friction of anticorrugating systems can be dramatically decreased by applying an external load. The counterintuitive behavior that deviates from the macroscopic Amonton law is dictated by quantum mechanical effects that induce a transformation from anticorrugation to corrugation in the near-surface region. We describe the load-driven modifications occurring in the potential energy surface of different rare gas-metal adsorbate systems, namely, Ar, Kr, Xe on Cu(111), and Xe on Ag(111), and we calculate the consequent friction drop for the commensurate Xe/Cu system by means of combined ab initio and classical molecular dynamics simulations.
Pressure Induced Friction Collapse of Rare Gas Boundary Layers Sliding over Metal Surfaces / Righi, Maria Clelia; Ferrario, Mauro. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 99:17(2007), pp. 1-4. [10.1103/PhysRevLett.99.176101]
Pressure Induced Friction Collapse of Rare Gas Boundary Layers Sliding over Metal Surfaces
RIGHI, Maria Clelia;FERRARIO, Mauro
2007
Abstract
In this Letter we show that friction of anticorrugating systems can be dramatically decreased by applying an external load. The counterintuitive behavior that deviates from the macroscopic Amonton law is dictated by quantum mechanical effects that induce a transformation from anticorrugation to corrugation in the near-surface region. We describe the load-driven modifications occurring in the potential energy surface of different rare gas-metal adsorbate systems, namely, Ar, Kr, Xe on Cu(111), and Xe on Ag(111), and we calculate the consequent friction drop for the commensurate Xe/Cu system by means of combined ab initio and classical molecular dynamics simulations.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett_99_176101.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
741.84 kB
Formato
Adobe PDF
|
741.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris