The superconsistent collocation method is based on collocation nodes which are different from those used to represent the solution. The two grids are chosen in such a way that the continuous and the discrete operators coincide on a space as larger as possible (superconsistency). There are many documented situations in which this technique provides excellent numerical results. Unfortunately very little theory has been developed. Here, a theoretical convergence analysis for the superconsistent discretization of the second derivative operator, when the representation grid is the set of Chebyshev Gauss–Lobatto nodes is carried out. To this end, a suitable quadrature formula is introduced and studied.
A Convergence Analysis for the Superconsistent Chebyshev Method / L., Fatone; Funaro, Daniele; G. J., Yoon. - In: APPLIED NUMERICAL MATHEMATICS. - ISSN 0168-9274. - STAMPA. - 58(2008), pp. 88-100.
Data di pubblicazione: | 2008 |
Titolo: | A Convergence Analysis for the Superconsistent Chebyshev Method |
Autore/i: | L., Fatone; Funaro, Daniele; G. J., Yoon |
Autore/i UNIMORE: | |
Rivista: | |
Volume: | 58 |
Pagina iniziale: | 88 |
Pagina finale: | 100 |
Codice identificativo ISI: | WOS:000251450400006 |
Codice identificativo Scopus: | 2-s2.0-36148981849 |
Citazione: | A Convergence Analysis for the Superconsistent Chebyshev Method / L., Fatone; Funaro, Daniele; G. J., Yoon. - In: APPLIED NUMERICAL MATHEMATICS. - ISSN 0168-9274. - STAMPA. - 58(2008), pp. 88-100. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris