In contrast to the human lutropin receptor (hLHR), very few naturally occurring activating mutations of the structurally related human follitropin receptor (hFSHR) have been identified. The present study was undertaken to determine if one aspect underlying this discrepancy might be a general resistance of the hFSHR to mutation-induced constitutive activity. Five different mutations were introduced into both the hLHR and hFSHR (four based on activating mutations of the hLHR gene, one based on an activating mutation of the hFSHR gene). Our results demonstrate that hFSHR constitutively activating mutants (CAMs) were not as active as hLHR CAMs containing the comparable mutation. Furthermore, although all hFSHR CAMs exhibited strong promiscuous activation by high concentrations of the other glycoprotein hormone receptors, hLHR CAMs showed little or no promiscuous activation. Our in vitro findings are consistent with in vivo observations of known pathophysiological conditions associated with hLHR CAMs, but not hFSHR CAMs, and with promiscuous activation of hFSHR CAMs, but not hLHR CAMs. Computational experiments suggest that the mechanisms through which homologous mutations increase the basal activity of the hLHR and the hFSHR are similar. This is particularly true for the strongest CAMs like L460(3.43)R. Disparate properties of the hLHR versus hFSHR CAMs may, therefore, be due to differences in shape and electrostatics features of the solvent-exposed cytosolic receptor domains involved in the receptor-G protein interface rather than to differences in the nature of local perturbation at the mutation site or in the way local perturbation is transferred to the putative G protein binding domains.

Intrinsic differences in the response of the human lutropin receptor versus the human follitropin receptor to activating mutations / M., Zhang; Y. X., Tao; G. L., Ryan; X., Feng; Fanelli, Francesca; D. L., Segaloff. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - ELETTRONICO. - 282:35(2007), pp. 25527-25539. [10.1074/jbc.M703500200]

Intrinsic differences in the response of the human lutropin receptor versus the human follitropin receptor to activating mutations.

FANELLI, Francesca;
2007

Abstract

In contrast to the human lutropin receptor (hLHR), very few naturally occurring activating mutations of the structurally related human follitropin receptor (hFSHR) have been identified. The present study was undertaken to determine if one aspect underlying this discrepancy might be a general resistance of the hFSHR to mutation-induced constitutive activity. Five different mutations were introduced into both the hLHR and hFSHR (four based on activating mutations of the hLHR gene, one based on an activating mutation of the hFSHR gene). Our results demonstrate that hFSHR constitutively activating mutants (CAMs) were not as active as hLHR CAMs containing the comparable mutation. Furthermore, although all hFSHR CAMs exhibited strong promiscuous activation by high concentrations of the other glycoprotein hormone receptors, hLHR CAMs showed little or no promiscuous activation. Our in vitro findings are consistent with in vivo observations of known pathophysiological conditions associated with hLHR CAMs, but not hFSHR CAMs, and with promiscuous activation of hFSHR CAMs, but not hLHR CAMs. Computational experiments suggest that the mechanisms through which homologous mutations increase the basal activity of the hLHR and the hFSHR are similar. This is particularly true for the strongest CAMs like L460(3.43)R. Disparate properties of the hLHR versus hFSHR CAMs may, therefore, be due to differences in shape and electrostatics features of the solvent-exposed cytosolic receptor domains involved in the receptor-G protein interface rather than to differences in the nature of local perturbation at the mutation site or in the way local perturbation is transferred to the putative G protein binding domains.
2007
282
35
25527
25539
Intrinsic differences in the response of the human lutropin receptor versus the human follitropin receptor to activating mutations / M., Zhang; Y. X., Tao; G. L., Ryan; X., Feng; Fanelli, Francesca; D. L., Segaloff. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - ELETTRONICO. - 282:35(2007), pp. 25527-25539. [10.1074/jbc.M703500200]
M., Zhang; Y. X., Tao; G. L., Ryan; X., Feng; Fanelli, Francesca; D. L., Segaloff
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021925820746272-main.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 583.36 kB
Formato Adobe PDF
583.36 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/584250
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 38
social impact