We prove a weak form of the Frobenius reciprocity theorem for locally compact groups. As a consequence, we propose a definition of square-integrable representation modulo a subgroup that clarifies the relations between coherent states, wavelet transforms and covariant localisation observables. A self-contained proof of the imprimitivity theorem for covariant positive operator-valued measures is given.

Square-integrability modulo a subgroup / Cassinelli, G; DE VITO, Ernesto. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 355:(2003), pp. 1443-1465. [10.1090/S0002-9947-02-03220-8]

Square-integrability modulo a subgroup

DE VITO, Ernesto
2003

Abstract

We prove a weak form of the Frobenius reciprocity theorem for locally compact groups. As a consequence, we propose a definition of square-integrable representation modulo a subgroup that clarifies the relations between coherent states, wavelet transforms and covariant localisation observables. A self-contained proof of the imprimitivity theorem for covariant positive operator-valued measures is given.
2003
355
1443
1465
Square-integrability modulo a subgroup / Cassinelli, G; DE VITO, Ernesto. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 355:(2003), pp. 1443-1465. [10.1090/S0002-9947-02-03220-8]
Cassinelli, G; DE VITO, Ernesto
File in questo prodotto:
File Dimensione Formato  
S0002-9947-02-03220-8.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 519.24 kB
Formato Adobe PDF
519.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/5470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact