A well-known approach for solving large and sparse linearly constrained quadratic programming (QP) problems is given by the splitting and projection methods. After a survey on these classical methods, we show that they can be unified in a general iterative scheme consisting in to solve a sequence of QP subproblems with the constraints of the original problem and an easily solvable Hessian matrix. A convergence theorem is given for this general scheme. In order to improve the numerical performance of these methods, we introduce two variants of a projection- type scheme that use a variable projection parameter at each step. The two variable projection methods differ in the strategy used to assure a sufficient decrease of the objective function at each iteration. We prove, under very general hypotheses, the convergence of these schemes and we propose two practical, nonexpensive and efficient updating rules for the projection parameter. An extensive numerical experimentation shows the effectiveness of the variable projection-type methods.

An overview on projection-type methods for convex large-scale quadratic programs / Zanni, Luca; V., Ruggiero. - STAMPA. - 58:(2002), pp. 269-300.

An overview on projection-type methods for convex large-scale quadratic programs

ZANNI, Luca;
2002

Abstract

A well-known approach for solving large and sparse linearly constrained quadratic programming (QP) problems is given by the splitting and projection methods. After a survey on these classical methods, we show that they can be unified in a general iterative scheme consisting in to solve a sequence of QP subproblems with the constraints of the original problem and an easily solvable Hessian matrix. A convergence theorem is given for this general scheme. In order to improve the numerical performance of these methods, we introduce two variants of a projection- type scheme that use a variable projection parameter at each step. The two variable projection methods differ in the strategy used to assure a sufficient decrease of the objective function at each iteration. We prove, under very general hypotheses, the convergence of these schemes and we propose two practical, nonexpensive and efficient updating rules for the projection parameter. An extensive numerical experimentation shows the effectiveness of the variable projection-type methods.
Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models
9781402001611
Kluwer Academic Publ.
STATI UNITI D'AMERICA
An overview on projection-type methods for convex large-scale quadratic programs / Zanni, Luca; V., Ruggiero. - STAMPA. - 58:(2002), pp. 269-300.
Zanni, Luca; V., Ruggiero
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/467134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact