In this paper Kohonen feature map is applied to the so-called two-spiral problem. Even if this network is unsupervised, the results indicate that the ability to classify or visualize the data structure depends on the training parameters. The example shows, therefore, that the network self-organization can be limited and the choices of the researcher can strongly affect the network output.

Kohonen networks and the influence of training on data structures / Morlini, Isabella. - STAMPA. - 1:(1998), pp. 370-379. (Intervento presentato al convegno 1998 IEEE Signal Processing Society Workshop tenutosi a Cambridge, UK nel 1-2 Settembre 1998).

Kohonen networks and the influence of training on data structures

MORLINI, Isabella
1998

Abstract

In this paper Kohonen feature map is applied to the so-called two-spiral problem. Even if this network is unsupervised, the results indicate that the ability to classify or visualize the data structure depends on the training parameters. The example shows, therefore, that the network self-organization can be limited and the choices of the researcher can strongly affect the network output.
1998
1998 IEEE Signal Processing Society Workshop
Cambridge, UK
1-2 Settembre 1998
1
370
379
Morlini, Isabella
Kohonen networks and the influence of training on data structures / Morlini, Isabella. - STAMPA. - 1:(1998), pp. 370-379. (Intervento presentato al convegno 1998 IEEE Signal Processing Society Workshop tenutosi a Cambridge, UK nel 1-2 Settembre 1998).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/465822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact