ll;eprove allulllberof negaLive resultsahout practicaf (i.e., numerically accurate) algorithms for certain matrix factorization. In particular. we prow that the popular (;iwns’ method for computing the QR decomposition is inherentl} sequential over the realistic model of floating point arithmetic. We also prove a number of additional results concerning Gaussian Elimination for computing the LIT decon]- positiou. .iltogether, the results of this paper sllpport the widespread belief that there is a tradeotlbetween palallclism and accuracy in numerical algorithms.
On the Parallel Complexity of Matrix Factorization Algorithms / Leoncini, Mauro; G., Manzini; L., Margara. - STAMPA. - (1997), pp. 63-71. (Intervento presentato al convegno Parallel Algorithms and Architectures tenutosi a Newport, Rhode Island, United States nel 23 - 25 giugno 1997) [10.1145/258492.258499].
On the Parallel Complexity of Matrix Factorization Algorithms
LEONCINI, Mauro;
1997
Abstract
ll;eprove allulllberof negaLive resultsahout practicaf (i.e., numerically accurate) algorithms for certain matrix factorization. In particular. we prow that the popular (;iwns’ method for computing the QR decomposition is inherentl} sequential over the realistic model of floating point arithmetic. We also prove a number of additional results concerning Gaussian Elimination for computing the LIT decon]- positiou. .iltogether, the results of this paper sllpport the widespread belief that there is a tradeotlbetween palallclism and accuracy in numerical algorithms.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris