We consider the generation of realistic data sets for combinatorial auctions. This problem has been recognized as central to enhance the contribution of the computer science community to the field. We put forward the notions of structure and budget as main guidelines towards the generation of succinct and realistic input data. We describe a computational framework for the analysis of existing algorithms against realistic benchmarks, and use it in the context of two real world scenarios, i.e., real estate and railroad track auctions. The results of this analysis suggest that the obstacles to using (one round) combinatorial auctions in real world applications might be of an economic nature rather than a computational one.

Generating Realistic Data Sets for Combinatorial Auctions / A., Bonaccorsi; B., Codenotti; N., Dimitri; Leoncini, Mauro; G., Resta; P., Santi. - STAMPA. - (2003), pp. 331-338. ((Intervento presentato al convegno E-Commerce Technology (CEC'03) tenutosi a Newport Beach, California, USA nel 24-27 giugno 2003.

Generating Realistic Data Sets for Combinatorial Auctions

LEONCINI, Mauro;
2003

Abstract

We consider the generation of realistic data sets for combinatorial auctions. This problem has been recognized as central to enhance the contribution of the computer science community to the field. We put forward the notions of structure and budget as main guidelines towards the generation of succinct and realistic input data. We describe a computational framework for the analysis of existing algorithms against realistic benchmarks, and use it in the context of two real world scenarios, i.e., real estate and railroad track auctions. The results of this analysis suggest that the obstacles to using (one round) combinatorial auctions in real world applications might be of an economic nature rather than a computational one.
E-Commerce Technology (CEC'03)
Newport Beach, California, USA
24-27 giugno 2003
331
338
A., Bonaccorsi; B., Codenotti; N., Dimitri; Leoncini, Mauro; G., Resta; P., Santi
Generating Realistic Data Sets for Combinatorial Auctions / A., Bonaccorsi; B., Codenotti; N., Dimitri; Leoncini, Mauro; G., Resta; P., Santi. - STAMPA. - (2003), pp. 331-338. ((Intervento presentato al convegno E-Commerce Technology (CEC'03) tenutosi a Newport Beach, California, USA nel 24-27 giugno 2003.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/465519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact