A fully quantum theory of phonon-limited electron transport in semiconductors is applied to a homogeneous steady-state situation to investigate the difference between quantum results and the results of a semiclassical theory. The Wigner function is used for the quantum approach, and the Monte Carlo simulations are performed in both semiclassical and quantum theories. In the considered case, hot-electron transport in a simple silicon model at 77 K, very little difference has been found since collisional broadening changes the possible final states of the electronic transitions without altering in a significan way the total scattering rate and therefore the momentum relaxation efficiency of phonon scattering.
Quantum phonon-limited high-field electron transport in semiconductors / Ferrari, G; Cancellieri, E; Bordone, Paolo; Jacoboni, Carlo. - STAMPA. - 110:(2006), pp. 301-304. (Intervento presentato al convegno 14th International Conference on Nonequilibrium Carrier Transport in Semiconductors tenutosi a Chicago, IL, USA nel 25-29 luglio 2005).
Quantum phonon-limited high-field electron transport in semiconductors
BORDONE, Paolo;JACOBONI, Carlo
2006
Abstract
A fully quantum theory of phonon-limited electron transport in semiconductors is applied to a homogeneous steady-state situation to investigate the difference between quantum results and the results of a semiclassical theory. The Wigner function is used for the quantum approach, and the Monte Carlo simulations are performed in both semiclassical and quantum theories. In the considered case, hot-electron transport in a simple silicon model at 77 K, very little difference has been found since collisional broadening changes the possible final states of the electronic transitions without altering in a significan way the total scattering rate and therefore the momentum relaxation efficiency of phonon scattering.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris