The notion of equivalent number of degrees of freedom (e.d.f.) to be usedin neural network modeling from small datasets has been introduced in Ingrassiaand Morlini (2005). It is much smaller than the total number of parameters andit does not depend on the number of input variables. We generalize our previousresults and discuss the use of the e.d.f. in the general framework of multivariatenonparametric model selection. Through numerical simulations, we also investigatethe behavior of model selection criteria like AIC, GCV and BIC/SBC, when thee.d.f. is used instead of the total number of the adaptive parameters in the model.
Equivalent number of degrees of freedom for neural networks / S., Ingrassia; Morlini, Isabella. - STAMPA. - (2007), pp. 229-236. (Intervento presentato al convegno 30th Annual Conference of the German Classification Society (Gesellschaft fur Klassifikation) on Advances in Data Analysis, GfKl 2006 tenutosi a Berlin, deu nel 2006) [10.1007/978-3-540-70981-7_26].
Equivalent number of degrees of freedom for neural networks
MORLINI, Isabella
2007
Abstract
The notion of equivalent number of degrees of freedom (e.d.f.) to be usedin neural network modeling from small datasets has been introduced in Ingrassiaand Morlini (2005). It is much smaller than the total number of parameters andit does not depend on the number of input variables. We generalize our previousresults and discuss the use of the e.d.f. in the general framework of multivariatenonparametric model selection. Through numerical simulations, we also investigatethe behavior of model selection criteria like AIC, GCV and BIC/SBC, when thee.d.f. is used instead of the total number of the adaptive parameters in the model.File | Dimensione | Formato | |
---|---|---|---|
Ingrassia & Morlini Springer 2007.pdf
Accesso riservato
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
464.27 kB
Formato
Adobe PDF
|
464.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris