The notion of equivalent number of degrees of freedom (e.d.f.) to be usedin neural network modeling from small datasets has been introduced in Ingrassiaand Morlini (2005). It is much smaller than the total number of parameters andit does not depend on the number of input variables. We generalize our previousresults and discuss the use of the e.d.f. in the general framework of multivariatenonparametric model selection. Through numerical simulations, we also investigatethe behavior of model selection criteria like AIC, GCV and BIC/SBC, when thee.d.f. is used instead of the total number of the adaptive parameters in the model.

Equivalent number of degrees of freedoms for neural networks / S., Ingrassia; Morlini, Isabella. - STAMPA. - (2007), pp. 229-236.

Equivalent number of degrees of freedoms for neural networks.

MORLINI, Isabella
2007

Abstract

The notion of equivalent number of degrees of freedom (e.d.f.) to be usedin neural network modeling from small datasets has been introduced in Ingrassiaand Morlini (2005). It is much smaller than the total number of parameters andit does not depend on the number of input variables. We generalize our previousresults and discuss the use of the e.d.f. in the general framework of multivariatenonparametric model selection. Through numerical simulations, we also investigatethe behavior of model selection criteria like AIC, GCV and BIC/SBC, when thee.d.f. is used instead of the total number of the adaptive parameters in the model.
229
236
S., Ingrassia; Morlini, Isabella
Equivalent number of degrees of freedoms for neural networks / S., Ingrassia; Morlini, Isabella. - STAMPA. - (2007), pp. 229-236.
File in questo prodotto:
File Dimensione Formato  
Ingrassia & Morlini Springer 2007.pdf

non disponibili

Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 464.27 kB
Formato Adobe PDF
464.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/462126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact