The first aim of this paper is to present an original proposal on the measurement of customer satisfaction. The statistical method is based on two different types of neural networks: the self organizing maps and the radial basis function networks. The latter are implemented with orthogonal least squares selection of the basis functions, in order to avoid unstable results and computational problems in the subset selection algorithm due to multicollinearity in the input matrix. Orthogonal least squares are also much faster than forward selection in data mining, when the input matrix is large. Particularly attention is paid on the pre-processing and processing step (choice of the parameters and stability of the results) and on the definition of multivariate outliers. The case study presented throughout the paper is the measurement of the student satisfaction in the Faculty of Economics of the University of Parma and the quantification of the lag between perceived and expected quality.

Reti neurali e data mining per l’analisi della customer satisfaction: il caso della qualità della didattica nella Facoltà di Economia di Parma / Morlini, Isabella. - STAMPA. - (2004), pp. 173-203.

Reti neurali e data mining per l’analisi della customer satisfaction: il caso della qualità della didattica nella Facoltà di Economia di Parma

MORLINI, Isabella
2004

Abstract

The first aim of this paper is to present an original proposal on the measurement of customer satisfaction. The statistical method is based on two different types of neural networks: the self organizing maps and the radial basis function networks. The latter are implemented with orthogonal least squares selection of the basis functions, in order to avoid unstable results and computational problems in the subset selection algorithm due to multicollinearity in the input matrix. Orthogonal least squares are also much faster than forward selection in data mining, when the input matrix is large. Particularly attention is paid on the pre-processing and processing step (choice of the parameters and stability of the results) and on the definition of multivariate outliers. The case study presented throughout the paper is the measurement of the student satisfaction in the Faculty of Economics of the University of Parma and the quantification of the lag between perceived and expected quality.
Analisi Simbolica e Data Mining
9788846457493
Franco Angeli
ITALIA
Reti neurali e data mining per l’analisi della customer satisfaction: il caso della qualità della didattica nella Facoltà di Economia di Parma / Morlini, Isabella. - STAMPA. - (2004), pp. 173-203.
Morlini, Isabella
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/462123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact