In this chapter we compare the effectiveness of two popular energy conservation strategies, namely topology control protocols and cooperative cell-based approaches, to reduce the energy consumption, and thus extend the lifetime, of wireless sensor networks. To this end, we define a realistic (although necessarily idealized in some respects) and unified framework of investigation. Using this framework, we prove lower bounds on network lifetime for cell-based cooperative strategies with node densities that are known to be sufficient to ensure a connected network. We also perform a number of simulation experiments, under a traffic model specifically designed for sensor networks, to evaluate and compare cell-based approaches with topology control. This is the first attempt at a comprehensive understanding of the conditions under which one of these approaches outperforms the other. Indeed, our study reveals a number of properties of the techniques investigated, some of which are not at all obvious. As expected, cell-based cooperative approaches, which completely power down network interfaces of certain nodes for extended time periods, produce longer network lifetimes when node density is very high. However, even with moderately high density of nodes, cell-based approaches do not significantly extend lifetime when it is defined in terms of connectivity. While it is not surprising that cell-based approaches do not extend lifetime under low density conditions, we find that topology control techniques can significantly increase network lifetime under those conditions and, in fact, they substantially outperform cooperative approaches in this respect. More details on the precise findings can be found in Section 31.7.

Comparison of Cell-Based and Topology Control-Based Energy Conservation in Wireless Sensor Networks / D. M., Blough; Leoncini, Mauro; G., Resta; P., Santi. - STAMPA. - (2005), pp. 507-528. [10.1201/9780203323687-36]

Comparison of Cell-Based and Topology Control-Based Energy Conservation in Wireless Sensor Networks

LEONCINI, Mauro;
2005

Abstract

In this chapter we compare the effectiveness of two popular energy conservation strategies, namely topology control protocols and cooperative cell-based approaches, to reduce the energy consumption, and thus extend the lifetime, of wireless sensor networks. To this end, we define a realistic (although necessarily idealized in some respects) and unified framework of investigation. Using this framework, we prove lower bounds on network lifetime for cell-based cooperative strategies with node densities that are known to be sufficient to ensure a connected network. We also perform a number of simulation experiments, under a traffic model specifically designed for sensor networks, to evaluate and compare cell-based approaches with topology control. This is the first attempt at a comprehensive understanding of the conditions under which one of these approaches outperforms the other. Indeed, our study reveals a number of properties of the techniques investigated, some of which are not at all obvious. As expected, cell-based cooperative approaches, which completely power down network interfaces of certain nodes for extended time periods, produce longer network lifetimes when node density is very high. However, even with moderately high density of nodes, cell-based approaches do not significantly extend lifetime when it is defined in terms of connectivity. While it is not surprising that cell-based approaches do not extend lifetime under low density conditions, we find that topology control techniques can significantly increase network lifetime under those conditions and, in fact, they substantially outperform cooperative approaches in this respect. More details on the precise findings can be found in Section 31.7.
2005
Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks
9780849328329
Auerbach Publications
STATI UNITI D'AMERICA
Comparison of Cell-Based and Topology Control-Based Energy Conservation in Wireless Sensor Networks / D. M., Blough; Leoncini, Mauro; G., Resta; P., Santi. - STAMPA. - (2005), pp. 507-528. [10.1201/9780203323687-36]
D. M., Blough; Leoncini, Mauro; G., Resta; P., Santi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/461939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact