Functionally graded materials are finding increasing applications especially as protective coatings, due to their mechanical properties such as resistance to wear and contact damage. It is well known that the microstructure of FGMs governs the resulting global properties. Finite element simulations can be successfully used to characterize the performance of these materials, provided that the computational model is able to take into account microstructural variations along the thickness. In this work, Functionally Graded Materials obtained by percolation of a glass into a bulk polycrystalline alumina are considered and the effect of the microstructure on the overall behavior is investigated by means of a microstructure-based FEM approach. The model is validated by comparison with experimental data, and can be employed in order to optimize the design of these graded surfaces.
Computational simulations for the optimisation of the mechanical properties of alumina-glass Functionally Graded Materials / Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Siligardi, Cristina; Sola, Antonella. - STAMPA. - 42:(2004), pp. 679-686.
Computational simulations for the optimisation of the mechanical properties of alumina-glass Functionally Graded Materials
CANNILLO, Valeria;MANFREDINI, Tiziano;MONTORSI, Monia;SILIGARDI, Cristina;SOLA, Antonella
2004
Abstract
Functionally graded materials are finding increasing applications especially as protective coatings, due to their mechanical properties such as resistance to wear and contact damage. It is well known that the microstructure of FGMs governs the resulting global properties. Finite element simulations can be successfully used to characterize the performance of these materials, provided that the computational model is able to take into account microstructural variations along the thickness. In this work, Functionally Graded Materials obtained by percolation of a glass into a bulk polycrystalline alumina are considered and the effect of the microstructure on the overall behavior is investigated by means of a microstructure-based FEM approach. The model is validated by comparison with experimental data, and can be employed in order to optimize the design of these graded surfaces.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris