A non-paraxial beam propagation method for non-linear media is presented. It directlyimplements the non-linear Helmholtz equation without introducing the slowing varyingenvelope approximation. The finite element method has been used to describe the fieldand the medium characteristics on the transverse cross-section as well as along thelongitudinal direction. The finite element capabilities as, for example, the non-uniformmesh distribution, the use of adaptive mesh techniques and the high sparsity of thesystem matrices, allow one to obtain a fast, versatile and accurate tool for beampropagation analysis. Examples of spatial soliton evolution describe phenomena notpredicted in the frame of the slowing varying envelope approximation.

Finite Element Method Resolution of Non-Linear Helmholtz equation / S., Selleri; Vincetti, Luca; A., Cucinotta. - In: OPTICAL AND QUANTUM ELECTRONICS. - ISSN 0306-8919. - STAMPA. - 30:(1998), pp. 557-565. [10.1023/A:1006953912607]

Finite Element Method Resolution of Non-Linear Helmholtz equation

VINCETTI, Luca;
1998

Abstract

A non-paraxial beam propagation method for non-linear media is presented. It directlyimplements the non-linear Helmholtz equation without introducing the slowing varyingenvelope approximation. The finite element method has been used to describe the fieldand the medium characteristics on the transverse cross-section as well as along thelongitudinal direction. The finite element capabilities as, for example, the non-uniformmesh distribution, the use of adaptive mesh techniques and the high sparsity of thesystem matrices, allow one to obtain a fast, versatile and accurate tool for beampropagation analysis. Examples of spatial soliton evolution describe phenomena notpredicted in the frame of the slowing varying envelope approximation.
1998
30
557
565
Finite Element Method Resolution of Non-Linear Helmholtz equation / S., Selleri; Vincetti, Luca; A., Cucinotta. - In: OPTICAL AND QUANTUM ELECTRONICS. - ISSN 0306-8919. - STAMPA. - 30:(1998), pp. 557-565. [10.1023/A:1006953912607]
S., Selleri; Vincetti, Luca; A., Cucinotta
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/460236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact