We consider k-factorizations of the complete graph that are 1-rotational under an assigned group G, namely that admit G as an automorphism group acting sharply transitively on all but one vertex. After proving that the k-factors of such a factorization are pairwise isomorphic, we focus our attention to the special case k=2, a case in which we prove the involutions of G necessarily form a unique conjugacy class. We completely characterize, in particular, the 2-factorizations that are 1-rotational under a dihedral group. Finally, we get infinite new classes of prviously unknown solutions to the Oberwolfach problem via some direct and recursive constructions.
1-Rotational k-Factorizations of the Complete Graph and New Solutions to the Oberwolfach Problem / Buratti, M; Rinaldi, Gloria. - In: JOURNAL OF COMBINATORIAL DESIGNS. - ISSN 1063-8539. - STAMPA. - 16:2(2008), pp. 87-100. [10.1002/jcd.20163]
1-Rotational k-Factorizations of the Complete Graph and New Solutions to the Oberwolfach Problem
RINALDI, Gloria
2008
Abstract
We consider k-factorizations of the complete graph that are 1-rotational under an assigned group G, namely that admit G as an automorphism group acting sharply transitively on all but one vertex. After proving that the k-factors of such a factorization are pairwise isomorphic, we focus our attention to the special case k=2, a case in which we prove the involutions of G necessarily form a unique conjugacy class. We completely characterize, in particular, the 2-factorizations that are 1-rotational under a dihedral group. Finally, we get infinite new classes of prviously unknown solutions to the Oberwolfach problem via some direct and recursive constructions.File | Dimensione | Formato | |
---|---|---|---|
JCD-06-857last.pdf
Accesso riservato
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
195.1 kB
Formato
Adobe PDF
|
195.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1Rot_2008.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
148.74 kB
Formato
Adobe PDF
|
148.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris