Let M be a Minkowski plane and let G be the automorpphism gropup of M. A set I of points of M is said to be regular if the identity is the unique automorphism of G mapping I onto itself. The set I is called a IR-set if it is a regular set of independent points. We prove that each known finite Minkoeski plane contain IR-stes except for the planes of order 4, 4 and 7 respectively. We find all the non-equivalent IR-sets contained in the known Minkowski planes of order 8 and 9 respectively.

Regular sets of points in finite Minkowski planes / Rinaldi, Gloria; F., Zironi. - In: ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS. - ISSN 1126-8042. - STAMPA. - 9:(2001), pp. 33-44.

Regular sets of points in finite Minkowski planes

RINALDI, Gloria;
2001

Abstract

Let M be a Minkowski plane and let G be the automorpphism gropup of M. A set I of points of M is said to be regular if the identity is the unique automorphism of G mapping I onto itself. The set I is called a IR-set if it is a regular set of independent points. We prove that each known finite Minkoeski plane contain IR-stes except for the planes of order 4, 4 and 7 respectively. We find all the non-equivalent IR-sets contained in the known Minkowski planes of order 8 and 9 respectively.
9
33
44
Regular sets of points in finite Minkowski planes / Rinaldi, Gloria; F., Zironi. - In: ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS. - ISSN 1126-8042. - STAMPA. - 9:(2001), pp. 33-44.
Rinaldi, Gloria; F., Zironi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/457882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact