Cl- currents elicited by gamma-aminobutyric acid (GABA) application were recorded with the whole-cell tight-seal technique from voltage-clamped cortical neurons of neonatal rats in primary culture. The peripheral benzodiazepine recognition site ligand 4'-chlorodiazepam [Ro 5-4864; 7-chloro-1,3-dihydro-1-methyl-5-(4-chlorophenyl)-2H-[1,4]-benzodiazep in-2- one] inhibited the GABA-generated currents in a dose-dependent manner. Also, a beta-carboline (DMCM; 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate methyl ester), acting as a negative allosteric modulator of GABAA receptors, reduced the intensity of GABA-generated currents with similar efficacy but greater potency. Flumazenil (Ro 15-1788; 8-fluro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo-[1,5-a] [1,4]-benzodiazepine-3-carboxylate ethyl ester) antagonized DMCM inhibition but not that elicited by 4'-chlorodiazepam. The isoquinoline carboxamide PK 11195, an antagonist of 4'-chlorodiazepam effects in other systems, failed to antagonize the action of 4'-chlorodiazepam. The transient expression of various molecular forms of GABAA receptors in the human embryonic kidney cell line 293 allowed a study of the minimal structural requirements for the inhibition of GABA-induced Cl- currents by bicuculline, picrotoxin, 4'-chlorodiazepam, and DMCM. GABA-elicited Cl- currents in cells coexpressing alpha 1 and beta 1 subunits of GABAA receptors were inhibited by bicuculline and picrotoxin, but not by DMCM or 4'-chlorodiazepam. Conversely, the GABA currents in cells coexpressing alpha 1 beta 1 and gamma 2 subunits were inhibited by bicuculline, picrotoxin, 4'-chlorodiazepam, and DMCM. Since the Cl- currents generated by GABA in some molecular forms of GABAA receptors are inhibited by bicuculline and picrotoxin only, 4'-chlorodiazepam cannot be acting isosterically with picrotoxin.

Differences in the negative allosteric modulation of gamma-aminobutyric acid (GABA) receptors elicited by 4'- chlorodiazepam and by beta-carboline-3-carboxilate ester: a study with natural and reconstituted receptors." / Puja, Giulia; SANTI M., R; Vicini, S; PRITCHETT D., B; SEEBURG P., H; AND COSTA, E.. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - STAMPA. - 86::(1989), pp. 7275-7279.

Differences in the negative allosteric modulation of gamma-aminobutyric acid (GABA) receptors elicited by 4'- chlorodiazepam and by beta-carboline-3-carboxilate ester: a study with natural and reconstituted receptors."

PUJA, Giulia;
1989

Abstract

Cl- currents elicited by gamma-aminobutyric acid (GABA) application were recorded with the whole-cell tight-seal technique from voltage-clamped cortical neurons of neonatal rats in primary culture. The peripheral benzodiazepine recognition site ligand 4'-chlorodiazepam [Ro 5-4864; 7-chloro-1,3-dihydro-1-methyl-5-(4-chlorophenyl)-2H-[1,4]-benzodiazep in-2- one] inhibited the GABA-generated currents in a dose-dependent manner. Also, a beta-carboline (DMCM; 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate methyl ester), acting as a negative allosteric modulator of GABAA receptors, reduced the intensity of GABA-generated currents with similar efficacy but greater potency. Flumazenil (Ro 15-1788; 8-fluro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo-[1,5-a] [1,4]-benzodiazepine-3-carboxylate ethyl ester) antagonized DMCM inhibition but not that elicited by 4'-chlorodiazepam. The isoquinoline carboxamide PK 11195, an antagonist of 4'-chlorodiazepam effects in other systems, failed to antagonize the action of 4'-chlorodiazepam. The transient expression of various molecular forms of GABAA receptors in the human embryonic kidney cell line 293 allowed a study of the minimal structural requirements for the inhibition of GABA-induced Cl- currents by bicuculline, picrotoxin, 4'-chlorodiazepam, and DMCM. GABA-elicited Cl- currents in cells coexpressing alpha 1 and beta 1 subunits of GABAA receptors were inhibited by bicuculline and picrotoxin, but not by DMCM or 4'-chlorodiazepam. Conversely, the GABA currents in cells coexpressing alpha 1 beta 1 and gamma 2 subunits were inhibited by bicuculline, picrotoxin, 4'-chlorodiazepam, and DMCM. Since the Cl- currents generated by GABA in some molecular forms of GABAA receptors are inhibited by bicuculline and picrotoxin only, 4'-chlorodiazepam cannot be acting isosterically with picrotoxin.
86:
7275
7279
Differences in the negative allosteric modulation of gamma-aminobutyric acid (GABA) receptors elicited by 4'- chlorodiazepam and by beta-carboline-3-carboxilate ester: a study with natural and reconstituted receptors." / Puja, Giulia; SANTI M., R; Vicini, S; PRITCHETT D., B; SEEBURG P., H; AND COSTA, E.. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - STAMPA. - 86::(1989), pp. 7275-7279.
Puja, Giulia; SANTI M., R; Vicini, S; PRITCHETT D., B; SEEBURG P., H; AND COSTA, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/456407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? ND
social impact