A study aimed at retrieving sea surface wind fields of semi-enclosed basins from combined use of SAR imagery and a high resolution mesoscale numerical atmospheric model, is presented. Two consecutive ERS-2 SAR frames and a set of NOAA/AVHRR and MODIS images acquired over the North Tyrrhenian Sea on March 30, 2000 were used for the analysis. SAR wind speeds and directions at 10 m above the sea surface were retrieved using the semi-empirical backscatter models CMOD4 and CMOD-IFREMER. Surface wind vectors predicted by the meteorological ETA model were exploited as guess input to SAR wind inversion procedure. ETA is a three-dimensional, primitive equation, grid-point model currently operational at the National Centers for Environmental Prediction of the U.S. National Weather Service. The model was adapted to run with a resolution up to about 4.0 Km. It was found that the inversion methodology was not able to resolve wind speed modulations due to the action of an atmospheric gravity wave, called “lee wave”, which occurred in the analyzed area. A simple atmospheric wave propagation model was thus used to account for the SAR observed surface wind speed modulation. Synergy with ETA model outputs was further exploited in simulations where atmospheric parameters up-wind the atmospheric wave were provided as input to the lee wave propagation model.

Synergic use of SAR imagery and high resolution atmospheric model to estimate marine wind fields : an application in presence of an atmospheric gravity wave episode / M., Adamo; G., DE CAROLIS; Morelli, Sandra; F., Parmiggiani. - In: RIVISTA ITALIANA DI TELERILEVAMENTO. - ISSN 1129-8596. - STAMPA. - Special Issue AIT-CETEM,35:(2006), pp. 147-160.

Synergic use of SAR imagery and high resolution atmospheric model to estimate marine wind fields : an application in presence of an atmospheric gravity wave episode.

MORELLI, Sandra;
2006

Abstract

A study aimed at retrieving sea surface wind fields of semi-enclosed basins from combined use of SAR imagery and a high resolution mesoscale numerical atmospheric model, is presented. Two consecutive ERS-2 SAR frames and a set of NOAA/AVHRR and MODIS images acquired over the North Tyrrhenian Sea on March 30, 2000 were used for the analysis. SAR wind speeds and directions at 10 m above the sea surface were retrieved using the semi-empirical backscatter models CMOD4 and CMOD-IFREMER. Surface wind vectors predicted by the meteorological ETA model were exploited as guess input to SAR wind inversion procedure. ETA is a three-dimensional, primitive equation, grid-point model currently operational at the National Centers for Environmental Prediction of the U.S. National Weather Service. The model was adapted to run with a resolution up to about 4.0 Km. It was found that the inversion methodology was not able to resolve wind speed modulations due to the action of an atmospheric gravity wave, called “lee wave”, which occurred in the analyzed area. A simple atmospheric wave propagation model was thus used to account for the SAR observed surface wind speed modulation. Synergy with ETA model outputs was further exploited in simulations where atmospheric parameters up-wind the atmospheric wave were provided as input to the lee wave propagation model.
Special Issue AIT-CETEM,35
147
160
Synergic use of SAR imagery and high resolution atmospheric model to estimate marine wind fields : an application in presence of an atmospheric gravity wave episode / M., Adamo; G., DE CAROLIS; Morelli, Sandra; F., Parmiggiani. - In: RIVISTA ITALIANA DI TELERILEVAMENTO. - ISSN 1129-8596. - STAMPA. - Special Issue AIT-CETEM,35:(2006), pp. 147-160.
M., Adamo; G., DE CAROLIS; Morelli, Sandra; F., Parmiggiani
File in questo prodotto:
File Dimensione Formato  
Synergic use of SAR imagery and high-resolution atmospheric.pdf

accesso aperto

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/455556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact