We investigate theoretically the light emission properties of short oligothiophenes containing a thienyl-S,S-dioxide moiety, which have recently been shown to exhibit strong photoluminescence efficiency and tunability. We find that the dioxide substitution tends to increase the torsion angle between rings and strongly affects the states at the optical band edges, in a way depending on the position of the substituted ring. We have identified a low-energy transition which is optically active only when the dioxide unit is inserted between two thiophene rings, as a result of increased inter-ring torsional angle also in the excited state. With the dioxide unit in a terminal position, planarity is favored in the excited state, and the transition is optically inactive. For short oligomers, this can lead to nonradiative decay quenching the luminescence. (C) 2001 American Institute of Physics.
Tailoring of Light Emission Properties of Functionalised Oligothiophenes / M. J., Caldas; E., Pettenati; Goldoni, Guido; Molinari, Elisa. - In: APPLIED PHYSICS LETTERS. - ISSN 0003-6951. - STAMPA. - 79:16(2001), pp. 2505-2507. [10.1063/1.1389325]
Tailoring of Light Emission Properties of Functionalised Oligothiophenes
GOLDONI, Guido;MOLINARI, Elisa
2001
Abstract
We investigate theoretically the light emission properties of short oligothiophenes containing a thienyl-S,S-dioxide moiety, which have recently been shown to exhibit strong photoluminescence efficiency and tunability. We find that the dioxide substitution tends to increase the torsion angle between rings and strongly affects the states at the optical band edges, in a way depending on the position of the substituted ring. We have identified a low-energy transition which is optically active only when the dioxide unit is inserted between two thiophene rings, as a result of increased inter-ring torsional angle also in the excited state. With the dioxide unit in a terminal position, planarity is favored in the excited state, and the transition is optically inactive. For short oligomers, this can lead to nonradiative decay quenching the luminescence. (C) 2001 American Institute of Physics.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris