Rapid Communications - Largely because of the lack of detailed microscopic information on the interfacial morphology, most electronic structure calculations on superlattices and quantum wells assume abrupt interfaces. Cross-sectional scanning tunneling microscopy (STM) measurements have now resolved atomic features of segregated interfaces. We fit a layer-by-layer growth model to the observed STM profiles, extracting surface-to-subsurface atomic exchange energies. These are then used to obtain a detailed simulated model of segregated InAs/GaSb superlattices with atomic resolution. Applying pseudopotential calculations to such structures reveals remarkable electronic consequences of segregation, including a blueshift of interband transitions, lowering of polarization anisotropy, and reduction of the amplitude of heavy-hole wave functions at the inverted interface.
Effects of interfacial atomic segregation on optical properties of InAs/GaSb superlattices / Magri, Rita; Zunger, Alex. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 64:8(2001), pp. 081305-1-081305-4. [10.1103/PhysRevB.64.081305]
Effects of interfacial atomic segregation on optical properties of InAs/GaSb superlattices
MAGRI, Rita;
2001
Abstract
Rapid Communications - Largely because of the lack of detailed microscopic information on the interfacial morphology, most electronic structure calculations on superlattices and quantum wells assume abrupt interfaces. Cross-sectional scanning tunneling microscopy (STM) measurements have now resolved atomic features of segregated interfaces. We fit a layer-by-layer growth model to the observed STM profiles, extracting surface-to-subsurface atomic exchange energies. These are then used to obtain a detailed simulated model of segregated InAs/GaSb superlattices with atomic resolution. Applying pseudopotential calculations to such structures reveals remarkable electronic consequences of segregation, including a blueshift of interband transitions, lowering of polarization anisotropy, and reduction of the amplitude of heavy-hole wave functions at the inverted interface.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris