Assuming the Born-Oppenheimer approximation for molecular wavefunctions satisfies the Hellmann-Feynman theorem, Rayleigh-Schrödinger perturbation theory is employed to develop an analytic formula for derivatives of expectation values and second-order properties with respect to nuclear coordinates.
Analytic geometrical derivatives of second-order molecular properties from perturbation theory / Lazzeretti, Paolo; R., Zanasi. - In: CHEMICAL PHYSICS LETTERS. - ISSN 0009-2614. - STAMPA. - 135:(1987), pp. 571-575. [10.1016/0009-2614(87)85213-2]
Analytic geometrical derivatives of second-order molecular properties from perturbation theory
LAZZERETTI, Paolo;
1987
Abstract
Assuming the Born-Oppenheimer approximation for molecular wavefunctions satisfies the Hellmann-Feynman theorem, Rayleigh-Schrödinger perturbation theory is employed to develop an analytic formula for derivatives of expectation values and second-order properties with respect to nuclear coordinates.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris