Assuming the Born-Oppenheimer approximation for molecular wavefunctions satisfies the Hellmann-Feynman theorem, Rayleigh-Schrödinger perturbation theory is employed to develop an analytic formula for derivatives of expectation values and second-order properties with respect to nuclear coordinates.

Analytic geometrical derivatives of second-order molecular properties from perturbation theory / Lazzeretti, Paolo; R., Zanasi. - In: CHEMICAL PHYSICS LETTERS. - ISSN 0009-2614. - STAMPA. - 135:(1987), pp. 571-575. [10.1016/0009-2614(87)85213-2]

Analytic geometrical derivatives of second-order molecular properties from perturbation theory

LAZZERETTI, Paolo;
1987

Abstract

Assuming the Born-Oppenheimer approximation for molecular wavefunctions satisfies the Hellmann-Feynman theorem, Rayleigh-Schrödinger perturbation theory is employed to develop an analytic formula for derivatives of expectation values and second-order properties with respect to nuclear coordinates.
1987
135
571
575
Analytic geometrical derivatives of second-order molecular properties from perturbation theory / Lazzeretti, Paolo; R., Zanasi. - In: CHEMICAL PHYSICS LETTERS. - ISSN 0009-2614. - STAMPA. - 135:(1987), pp. 571-575. [10.1016/0009-2614(87)85213-2]
Lazzeretti, Paolo; R., Zanasi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/454599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact