For a large class of equiregular sub-Riemannian manifolds, we showthat length minimizing curves have no corner-like singularities. Our first resultis the reduction of the problem to the homogeneous, rank 2 case, by means of anilpotent approximation. We also identify a suitable condition on the tangent Liealgebra implying existence of a horizontal basis of vector fields whose coefficientsdepend only on the first two coordinates x1, x2. Then, we cut the corner andlift the new curve to a horizontal one, obtaining a decrease of length as well as aperturbation of the end-point. In order to restore the end-point at a lower costof length, we introduce a new iterative construction, which represents the maincontribution of the paper. We also apply our results to some examples.
End-point equations and regularity of sub-Riemannian geodesics / Leonardi, Gian Paolo; Roberto, Monti. - In: GEOMETRIC AND FUNCTIONAL ANALYSIS. - ISSN 1016-443X. - STAMPA. - 18:2(2008), pp. 552-582. [10.1007/s00039-008-0662-y]
End-point equations and regularity of sub-Riemannian geodesics
LEONARDI, Gian Paolo;
2008
Abstract
For a large class of equiregular sub-Riemannian manifolds, we showthat length minimizing curves have no corner-like singularities. Our first resultis the reduction of the problem to the homogeneous, rank 2 case, by means of anilpotent approximation. We also identify a suitable condition on the tangent Liealgebra implying existence of a horizontal basis of vector fields whose coefficientsdepend only on the first two coordinates x1, x2. Then, we cut the corner andlift the new curve to a horizontal one, obtaining a decrease of length as well as aperturbation of the end-point. In order to restore the end-point at a lower costof length, we introduce a new iterative construction, which represents the maincontribution of the paper. We also apply our results to some examples.File | Dimensione | Formato | |
---|---|---|---|
gafa2008of.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
342.14 kB
Formato
Adobe PDF
|
342.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
LeoMon_GAFA2008.pdf
Accesso riservato
Descrizione: Articolo pubblicato
Tipologia:
Versione pubblicata dall'editore
Dimensione
334.31 kB
Formato
Adobe PDF
|
334.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris