We present a general framework where countable partitions of a measure space (X,M, μ)become elements of a metric space defined by means of a suitable distance function. Aftera detailed study of their metric properties, we consider partitions of Rn with locally finiteinterface area (Caccioppoli partitions). We present some meaningful results (in particular,P-decomposition and regularity) which can form a theoretical basis for the application tovariational problems.
Metric spaces of partitions and Caccioppoli partitions / Leonardi, Gian Paolo; Tamanini, I.. - In: ADVANCES IN MATHEMATICAL SCIENCES AND APPLICATIONS. - ISSN 1343-4373. - STAMPA. - 12:2(2002), pp. 725-753.
Metric spaces of partitions and Caccioppoli partitions
LEONARDI, Gian Paolo;
2002
Abstract
We present a general framework where countable partitions of a measure space (X,M, μ)become elements of a metric space defined by means of a suitable distance function. Aftera detailed study of their metric properties, we consider partitions of Rn with locally finiteinterface area (Caccioppoli partitions). We present some meaningful results (in particular,P-decomposition and regularity) which can form a theoretical basis for the application tovariational problems.File | Dimensione | Formato | |
---|---|---|---|
LeoTam_AMSA2002.pdf
Accesso riservato
Descrizione: Articolo pubblicato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris