We consider a class of matrices, that we call nearly Toeplitz, and show that they have interesting spectral properties. More precisely, we show that the eigenvectors of certain nearly Toeplitz matrices give complete information about the structure of the symmetric group Sk, i.e., thegroup of permutations of the integers 1,. . . , k. Obtaining this kind of information is a central task in two seemingly unrelated branches of mathematics, namely the Character Theory of the Symmetric Group and the Polya’s Theory of Counting.

Spectral Properties of Some Matrices Close to the Toeplitz Triangular Form / A., Bernasconi; Leoncini, Mauro; G., Resta. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - STAMPA. - 27:(1994), pp. 79-92.

Spectral Properties of Some Matrices Close to the Toeplitz Triangular Form

LEONCINI, Mauro;
1994

Abstract

We consider a class of matrices, that we call nearly Toeplitz, and show that they have interesting spectral properties. More precisely, we show that the eigenvectors of certain nearly Toeplitz matrices give complete information about the structure of the symmetric group Sk, i.e., thegroup of permutations of the integers 1,. . . , k. Obtaining this kind of information is a central task in two seemingly unrelated branches of mathematics, namely the Character Theory of the Symmetric Group and the Polya’s Theory of Counting.
27
79
92
Spectral Properties of Some Matrices Close to the Toeplitz Triangular Form / A., Bernasconi; Leoncini, Mauro; G., Resta. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - STAMPA. - 27:(1994), pp. 79-92.
A., Bernasconi; Leoncini, Mauro; G., Resta
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/454053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact