In this note we consider, for a number of linear algebra problems, an environmentallowing approximate computations. Within this framework we show that the relative complexity of these problems should be studied according to a strict notion of reducibility, which corresponds to the well-known many-one reducibility of combinatorial complexity.

Parallel Algebraic Reductions among Numerical Problems / B., Codenotti; Leoncini, Mauro; G., Resta. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - STAMPA. - 6:(1991), pp. 27-31.

Parallel Algebraic Reductions among Numerical Problems

LEONCINI, Mauro;
1991

Abstract

In this note we consider, for a number of linear algebra problems, an environmentallowing approximate computations. Within this framework we show that the relative complexity of these problems should be studied according to a strict notion of reducibility, which corresponds to the well-known many-one reducibility of combinatorial complexity.
1991
6
27
31
Parallel Algebraic Reductions among Numerical Problems / B., Codenotti; Leoncini, Mauro; G., Resta. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - STAMPA. - 6:(1991), pp. 27-31.
B., Codenotti; Leoncini, Mauro; G., Resta
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/454052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact