We study the complexity of the 2-dimensional knapsack problemmax{c_1 x + c_2 y : a_1 x + a_2 y <= b; x, y \in Z_+}, where c_1, c_2, a_1, a_2, b \in R_+. The problem is defined in terms of real numbers and we study it where an integral solution is sought under a real number model of computation. Weobtain a tight complexity bound Theta(log b/a_min), where a_min = min{a_1, a_2}.

Tight Complexity Bounds for the Two-Dimensional Real Knapsack / V. E., Brimkov; S. S., Danchev; Leoncini, Mauro. - In: CALCOLO. - ISSN 0008-0624. - STAMPA. - 36:(1999), pp. 123-128.

Tight Complexity Bounds for the Two-Dimensional Real Knapsack

LEONCINI, Mauro
1999

Abstract

We study the complexity of the 2-dimensional knapsack problemmax{c_1 x + c_2 y : a_1 x + a_2 y <= b; x, y \in Z_+}, where c_1, c_2, a_1, a_2, b \in R_+. The problem is defined in terms of real numbers and we study it where an integral solution is sought under a real number model of computation. Weobtain a tight complexity bound Theta(log b/a_min), where a_min = min{a_1, a_2}.
36
123
128
Tight Complexity Bounds for the Two-Dimensional Real Knapsack / V. E., Brimkov; S. S., Danchev; Leoncini, Mauro. - In: CALCOLO. - ISSN 0008-0624. - STAMPA. - 36:(1999), pp. 123-128.
V. E., Brimkov; S. S., Danchev; Leoncini, Mauro
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/454040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact