In this paper, we consider the Newton-iterative method for solving weakly nonlinear finite-difference systems of the form F(u)=Au+G(u)=0, where the jacobian matrix G'(u) satisfies an affine invariant Lipschitz condition. We also consider a modification of the method for which we can improve the likelihood of convergence from initial approximations that may be outside the attraction ball of the Newton-iterative method. We analyse the convergence of this damped method in the framework of the line search strategy. Numerical experiments on a diffusion-convection problem show the effectiveness of the method.
On solving a special class of weakly nonlinear finite-difference systems / Galligani, Emanuele. - In: INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS. - ISSN 0020-7160. - STAMPA. - 86:3(2009), pp. 503-522. [10.1080/00207160701650353]
On solving a special class of weakly nonlinear finite-difference systems
GALLIGANI, Emanuele
2009
Abstract
In this paper, we consider the Newton-iterative method for solving weakly nonlinear finite-difference systems of the form F(u)=Au+G(u)=0, where the jacobian matrix G'(u) satisfies an affine invariant Lipschitz condition. We also consider a modification of the method for which we can improve the likelihood of convergence from initial approximations that may be outside the attraction ball of the Newton-iterative method. We analyse the convergence of this damped method in the framework of the line search strategy. Numerical experiments on a diffusion-convection problem show the effectiveness of the method.File | Dimensione | Formato | |
---|---|---|---|
Galligani_ijcm2009.pdf
Accesso riservato
Tipologia:
AO - Versione originale dell'autore proposta per la pubblicazione
Dimensione
192 kB
Formato
Adobe PDF
|
192 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris