We investigate theoretically the spatial dependence of the linear absorption spectra of single and coupledsemiconductor quantum dots, where the strong three-dimensional quantum confinement leads to an overallenhancement of Coulomb interaction and, in turn, to a pronounced renormalization of the excitonic properties.We show that—because of such Coulomb correlations and the spatial interference of the exciton wavefunctions—unexpected spectral features appear whose intensity depends on spatial resolution in a highlynonmonotonic way when the spatial resolution is comparable with the excitonic Bohr radius. We finallydiscuss how the optical near-field properties of double quantum dots are affected by their coupling.
Local absorption spectra of artificial atoms and molecules / Simserides, C.; Hohenester, U.; Goldoni, Guido; Molinari, Elisa. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 62:20(2000), pp. 13657-13666. [10.1103/PhysRevB.62.13657]
Local absorption spectra of artificial atoms and molecules
GOLDONI, Guido;MOLINARI, Elisa
2000
Abstract
We investigate theoretically the spatial dependence of the linear absorption spectra of single and coupledsemiconductor quantum dots, where the strong three-dimensional quantum confinement leads to an overallenhancement of Coulomb interaction and, in turn, to a pronounced renormalization of the excitonic properties.We show that—because of such Coulomb correlations and the spatial interference of the exciton wavefunctions—unexpected spectral features appear whose intensity depends on spatial resolution in a highlynonmonotonic way when the spatial resolution is comparable with the excitonic Bohr radius. We finallydiscuss how the optical near-field properties of double quantum dots are affected by their coupling.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris