Many naturally occurring and engineered mutations lead to constitutive activation of the G protein-coupled lutropin receptor (LHR), some of which also result in reduced ligand responsiveness. To elucidate the nature of interhelical interactions in this heptahelical receptor and changes thereof accompanying activation, we have utilized site-directed mutagenesis on transmembrane helices 6 and 7 of rat LHR to prepare and characterize a number of single, double, and triple mutants. The potent constitutively activating mutants, D556(6.44)H and D556(6.44)Q, were combined with weaker activating mutants, N593(7.45)R and N597(7.49)Q, and the loss-of-responsiveness mutant, N593(7.45)A. The engineered mutants have also been simulated using a new receptor model based on the crystal structure of rhodopsin. The results suggest that constitutive LHR activation by mutations at Asp-556(6.44) is triggered by the breakage or weakening of the interaction found in the wild type receptor between Asp-556(6.44) and Asn-593(7.45). Whereas this perturbation is unique to the activating mutations at Asp-556(6.44), common features to all of the most active LHR mutants are the breakage of the charge-reinforced H-bonding interaction between Arg-442(3.50) and Asp-542(6.30) and the increase in solvent accessibility of the cytosolic extensions of helices 3 and 6, which probably participate in the receptor-G protein interface. Asn-593(7.45) and Asn-597(7.49) also seem to be necessary for the high constitutive activities of D556(6.44)H and D556(6.44)Q and for full ligand responsiveness. The new theoretical model provides a foundation for further experimental work on the molecular mechanism(s) of receptor activation.
A model for constitutive lutropin receptor activation based on molecular simulation and engineered mutations in transmembrane helices 6 and 7 / Angelova, K.; Fanelli, Francesca; Puett, D.. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - ELETTRONICO. - 277:35(2002), pp. 32202-32213. [10.1074/jbc.M203272200]
A model for constitutive lutropin receptor activation based on molecular simulation and engineered mutations in transmembrane helices 6 and 7
FANELLI, Francesca;
2002
Abstract
Many naturally occurring and engineered mutations lead to constitutive activation of the G protein-coupled lutropin receptor (LHR), some of which also result in reduced ligand responsiveness. To elucidate the nature of interhelical interactions in this heptahelical receptor and changes thereof accompanying activation, we have utilized site-directed mutagenesis on transmembrane helices 6 and 7 of rat LHR to prepare and characterize a number of single, double, and triple mutants. The potent constitutively activating mutants, D556(6.44)H and D556(6.44)Q, were combined with weaker activating mutants, N593(7.45)R and N597(7.49)Q, and the loss-of-responsiveness mutant, N593(7.45)A. The engineered mutants have also been simulated using a new receptor model based on the crystal structure of rhodopsin. The results suggest that constitutive LHR activation by mutations at Asp-556(6.44) is triggered by the breakage or weakening of the interaction found in the wild type receptor between Asp-556(6.44) and Asn-593(7.45). Whereas this perturbation is unique to the activating mutations at Asp-556(6.44), common features to all of the most active LHR mutants are the breakage of the charge-reinforced H-bonding interaction between Arg-442(3.50) and Asp-542(6.30) and the increase in solvent accessibility of the cytosolic extensions of helices 3 and 6, which probably participate in the receptor-G protein interface. Asn-593(7.45) and Asn-597(7.49) also seem to be necessary for the high constitutive activities of D556(6.44)H and D556(6.44)Q and for full ligand responsiveness. The new theoretical model provides a foundation for further experimental work on the molecular mechanism(s) of receptor activation.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0021925820700839-main.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
631.4 kB
Formato
Adobe PDF
|
631.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris