The topological product S^3 x S^1 is proved to be the unique closed connected 4-manifold of regular genus one. As a consequence, the complex projective plane has regular genus two.

The topological product S3 × S1 is proved to be the unique closed connected 4-manifold of regular genus one. As a consequence, the complex projective plane CP2 has regular genus two. © 1989 American Mathematical Society.

A combinatorial characterization of S^3 x S^1 among closed 4-manifolds / Cavicchioli, Alberto. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 105 (4):4(1989), pp. 1008-1014. [10.1090/S0002-9939-1989-0931726-4]

A combinatorial characterization of S^3 x S^1 among closed 4-manifolds

CAVICCHIOLI, Alberto
1989

Abstract

The topological product S^3 x S^1 is proved to be the unique closed connected 4-manifold of regular genus one. As a consequence, the complex projective plane has regular genus two.
105 (4)
4
1008
1014
A combinatorial characterization of S^3 x S^1 among closed 4-manifolds / Cavicchioli, Alberto. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 105 (4):4(1989), pp. 1008-1014. [10.1090/S0002-9939-1989-0931726-4]
Cavicchioli, Alberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/451018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact